商品紹介
★最強最短の近道は、これだ!★
・画像・自然言語処理の機械学習コンテストに取り組みながら、深層学習の具体的な知識をいち早く身につけよう!
・レジェンドたちの豊富な経験に基づくスキルアップのノウハウも満載!
【主な内容】
第1章 機械学習コンテストの基礎知識
1.1 機械学習コンテストのおおまかな流れ
1.2 機械学習コンテストの歴史
1.3 機械学習コンテストの例
1.4 計算資源
第2章 探索的データ分析とモデルの作成・検証・性能向上
2.1 探索的データ分析
2.2 モデルの作成
2.3 モデルの検証
2.4 性能の向上
第3章 画像分類入門
3.1 畳み込みニューラルネットワークの基礎
3.2 コンテスト「Dogs vs. Cats Redux」の紹介
3.3 最初の学習:CNNアーキテクチャ
3.4 最初の学習:データセットの準備と学習ループ
3.5 最適化アルゴリズムと学習率スケジューリング
3.6 データ拡張
3.7 アンサンブル
3.8 さらにスコアを伸ばすために
第4章 画像検索入門
4.1 画像検索タスク
4.2 学習済みモデルを使ったベースライン手法
4.3 ベースラインを実装する
4.4 距離学習を学ぶ
4.5 画像マッチングによる検証
4.6 クエリ拡張を学ぶ
4.7 Kaggleコンテストでの実践
第5章 テキスト分類入門
5.1 Quora Question Pairs
5.2 特徴量ベースのモデル
5.3 ニューラルネットワークベースのモデル
・画像・自然言語処理の機械学習コンテストに取り組みながら、深層学習の具体的な知識をいち早く身につけよう!
・レジェンドたちの豊富な経験に基づくスキルアップのノウハウも満載!
【主な内容】
第1章 機械学習コンテストの基礎知識
1.1 機械学習コンテストのおおまかな流れ
1.2 機械学習コンテストの歴史
1.3 機械学習コンテストの例
1.4 計算資源
第2章 探索的データ分析とモデルの作成・検証・性能向上
2.1 探索的データ分析
2.2 モデルの作成
2.3 モデルの検証
2.4 性能の向上
第3章 画像分類入門
3.1 畳み込みニューラルネットワークの基礎
3.2 コンテスト「Dogs vs. Cats Redux」の紹介
3.3 最初の学習:CNNアーキテクチャ
3.4 最初の学習:データセットの準備と学習ループ
3.5 最適化アルゴリズムと学習率スケジューリング
3.6 データ拡張
3.7 アンサンブル
3.8 さらにスコアを伸ばすために
第4章 画像検索入門
4.1 画像検索タスク
4.2 学習済みモデルを使ったベースライン手法
4.3 ベースラインを実装する
4.4 距離学習を学ぶ
4.5 画像マッチングによる検証
4.6 クエリ拡張を学ぶ
4.7 Kaggleコンテストでの実践
第5章 テキスト分類入門
5.1 Quora Question Pairs
5.2 特徴量ベースのモデル
5.3 ニューラルネットワークベースのモデル
マイメニュー
何か良い本ないかな?
おトクに読める本は?
探してる本はあるかな?
- 詳細検索
- 著者別検索
- 出版社別検索
- 書籍トップ
- 書籍一覧
- ビジネス書・政治・経済
- 小説一般
- 推理・ミステリー小説
- 歴史・戦記・時代小説
- ライトノベル
- コンピュータ・IT
- ホラー・怪奇小説
- SF・ファンタジー小説
- アクション・ハードボイルド小説
- 経済・社会小説
- エッセイ
- ノンフィクション
- 恋愛小説
- ハーレクイン小説
- 英語・語学
- 教育・教養
- 辞書
- 旅行・アウトドア・スポーツ
- 料理・生活
- 趣味・雑学・エンタメ
- 詩歌・戯曲
- 絵本・児童書
- マルチメディア
- 写真集
- ボーイズラブ
- アダルト
- 雑誌トップ
- 雑誌一覧
- ビジネス・政治経済
- 総合週刊誌・月刊誌
- モノ・トレンド
- 男性誌
- 女性誌
- 自動車・乗り物
- コンピュータ・サイエンス
- スポーツ・アウトドア
- エンターテイメント・グラビア
- 暮らし・食・教育
- 趣味・芸術・旅行
- コミック雑誌
- NHKテキスト[語学]
- NHKテキスト[一般]
- 有料メルマガ
- 無料コンテンツ/カタログ
書籍を探す
コミックを探す
雑誌を探す
新聞を探す
リンク
ヘルプ